
Using Histories to Implement Atomic Objects

Pui Ng

Department of Computer Science

University of Illinois at Urbana-Champaign

1304 W. Springfield Ave

Urbana, IL 61801

November 24, 1987 ,

Abstract

In th_s paper we describe an approach of implementing atomicity. Atomicity requires that

computations appear to be all-or-nothing and executed in a serialization order. The approach

we describe has three characteristics. First, it utilizes the semantics of an application to improve

concurrency. Second, it reduces the complexity of application-dependent synchronization code by

analyzing the process of writing it. In fact, the process can be automated with logic programming.

Third, our approach hides the protocol used to-arrive at a seriMization order from the applications.

As a result, different protocols can be used without affecting the applications. Our approach uses

a history tree abstraction. The history tree captures the ordering relationship among concurrent

computations. By determining what types of computations exist in the history tree and their

parameters, a computation can determine whether it can proceed.

1 Introduction and Motivation

Atomicity[Gra78,LamS0,LS83,S*85,W*85] has been accepted as a powerful and intuitive concept to

control the complexity of concurrency and recovery in a distributed system. In a system supporting

atomicity, computations are executed as atomic transactions, which are failure atomic and serialized.

Failure atomicity means that the outcome of a transaction is either committed or aborted: either all

of a transaction is executed or it appears that none h_ been executed. _Serialized transactions"

means that transactions appear to execute serially in a global serialization order, even though



they may be overlapped in actual execution. A concurrency control algorithm is needed to ensure

atomicity.

Many concurrency control algorithms have been proposed in the literature. Common

examples include the two-phase locking and timestarnp ordering algorithms[Gra78,BG81].

Many systems that employ these concurrency control algorithnm have been successfully

implemented[IMS84,W*82,A*76,Lis85]. Using these systems is relativelysimple: a programmer

isonly required to specify the boundaries of an atomic transaction. Concurrency control isper-

formed transparently by the system. As a result,it isalso easy to substitute one concurrency

control algorithm for another without affectingthe applicationprograms.

In many concurrency control algorithms,a system ismodeled as a collectionofobjects on which

read and write operations are performed. The model imposes a limit to concurrency because, to

guarantee failureatomicity, an object written by an incomplete transaction cannot have itsnew

value read by other transactions untilthe incomplete transaction iscommitted. Similarly,to guar-

antee serializability,for every transactionT intending to write a new value,the systbm must ensure

that the new value isread only by other transactionsthat are serializedafterT. To increaseconcur-

rency,many researchershave suggested utilizingthe semantics ofan application[Gar83,Wei84,SS84].

For example, two transactionsthat increment some kind of counter object can proceed concurrently

because increments are commutative. Moreover, an increment operation reallydoes not read the

value of the counter at a logicallevel,although at a lower levela read operation may be needed. A

transactionshould be able to increment the counter object even when the previous transaction that

increments the counter isstilluncommitted. The need for a higher levelof concurrency becomes

more pronounced in systems where long atomic transactionsaxe executed[Ng86] and systems with

localizedconcurrency bottlenecks.

Unfortunately, introducing application semantics has two drawbacks. First,itmakes writing

applications with atomic transactions more complicated. For example, to capture application se-

mantics, some researchershave extended rea_I/writelocks to logicallocks[SS84,Wei84]. _Increment

locks" that does not conflictwith one another can be used in the example above when an incre-

ment operation isinvoked. In addition to specifyingthese logicallocks and pairs of logicallocks

that conflict,the programmer must also providesome form of logicalrecovery so that the counter

object may be in the correct state under allpossible combinations of outcomes of the increment

transactions.

Second, itisnot clear how an applicationprogram can be written without exposing the under-
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lying concurrency control algorithm. An essential component of a concurrency control algorithm

is its serialization protocol, which determines the serialization order. For example, the serializa-

tion order is determined by the order of commitment in two-phase locking. In approaches using

logical locks, the application progranuner is aware of the underlying two-phase locking algorithm

and hence its serialization protocol. Changing the serialization protocol is not straightforward and

would require at least changing the concurrency control algorithm and rewriting the application

programs. Perhaps even worse, it requires familiarizing the application programmers with a new

algorithm.

The goal of this paper is to deal with these two problems using a history abstraction as the

basis for synchronization and recovery. We will describe how an application programmer can write

synchronization and recovery code based on the semantics of the application. We will argue that

this process is not an ad hoc one but, rather, follows a structured pattern. Consequently, even

though each application may have different semantics, writing application-specific synchronization

and recovery code and arguing about its correctness are simplified. We will also show that our

approach provides a basis for automating application-specific synchronization and recovery. Finally,

we will illustrate how the history abstraction can be incorporated with the serialization protocols

a large class of concurrency control algorithms. Changing the serialization protocol in the internal

implementation of the history abstraction will not affect the application-specific synchronization

and recovery code written using the abstraction.

The rest of this paper is organized as follows. In section 2 we will describe our system model.

Since application semantics is needed in our solution, we will also describe how it can be specified

using informal specifications. Section 3 gives an overview of our paradigm for synchronization. Sec-

tion 4 describes the interface of the abstractions provided to support our synchronization paradigm.

Section 5 is a simple example illustrating our paradigm. Section 6 improves on the example in sec-

tion 5 by providing more concurrency. Section 7 discusses how to deal with operations that cannot

proceed immediately. Finally, section 8 describe_ how application-dependent synchronization and

recovery can be automated.

2 System Model and Specification of Semantics

A system is modeled as a collection of atomic objects(Wei84]. Each atomic object supports a set of

operations. A transaction consists of a sequence of operations invoked at different atomic objects.



Atomic objects cooperate to make transactions atomic. The last operation invoked by a transaction

on any object is either a commit operation or an abort operation, which are supported by every

atomic object so that itcan be informed of the outcome of the transaction.As part of concurrency

control,atomic objectsfollow a serializationprotocol,which determines a global serializationorder

of the transactions. For example, in the two-phase locking algorithm, the serializationorder is

determined by the order in which transactions are committed. In most timestamp ordering al-

gorithrns,the serializationorder is determined by a timestamp acquired by each transaction at

itsbeginning. In some optimistic concurrency control algorithms[Day84], the serializationorder is

determined by the order of transactions in a dependency graph. The atomicity of transactions is

ensured by having each atomic object maintain the appearance that operations are executed in the

global serializationorder determined by the serializationprotocol.

Similar to the approach used in the paper by Liskov and Weihl{LW86], we will specify the

semantics of an atomic object informallyusing a state machine. An atomic object isspecifiedwith

four components: a set of possible states,an initialstate,a set of possible transitions,and rules

that determine how the states of the atomic object are changed by the transitions.A transition

corresponds to an operation invoked at the atomic object and the resultreturned.1 For example,

the specificationof a bank account object may look likethe following:

Possible states: non-negative real numbers

Initial state: 0

Possible transitions: deposit_z_okay, withdraw_z_okay, withdraw_z_insu f , read_balance_z

Rules for state changes: N(s, deposit_z_okay) -" s + z

N(s, withdraw_z_okay) = s - z if s >_ z

N(s, withdraw_.insuf) = s if s < z

N(s, read_balance.z) = s if s = z

where s is the current state of the state machine, z is any non-negative real number, and N is a

function defining how state changes in the sta_e machine with each incoming transition. Notice

that N is actually a partial function, since for some pairs of state s and transition t, N(s, t) is

undefined.

The bank account object supports three operations: deposit, withdraw, and read_balance. The

deposit operation takes one argument of type real, which is represented by the symbol z, and

_The specification has incorporated the result returned by an operation as part of the transition, rather than as

an output caused by the transition. This is merely a notational convenience.
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addsthat amountto the balance. It always returns okay, which means that the operation is

succes_ul]y performed. The withdraw operation also takes one argument (z). It may return okay

or insuf depending on whether there is sufllcient funds in the balance to cover the withdrawal.

The read_Salance operation returns the current balance, which is represented by the symbol z.

When there is no concurrency in the system (i.e., transactions are executed serially), an imple-

mentation of an object meets the specification as long as any transition sequence that it generates

in response to invoked operations is valid, and a transition sequence is valid if it causes the state

machine to go from the initial state to one of the possible states. For example, in the bank account

example above, the sequence (deposit_30_okay, toithdraw.20_insuf) is invalid because the first

transition causes the state to change from 0 to 30, and N(30, withdrau__20_insu/) is undefined.

The specification models our expectation that withdrawing $20 should not return with insufficient

funds after we have deposited $30.

When there is concurrency in the system, instead of considering the actual transition sequence

generated by an atomic object, we should consider an hypothetical sequence that consists only

of committed transitions and is ordered according to the global serialization order. We call this

hypothetical sequence the serialized sequence. An implementation of an atomic object is con-

sidered to meet the specification if any serialized sequence it generates is valid. For example,

suppose {deposit_lO_oka!l, withdrato_40.insuf, deposit_50_okay_ is the actual transition sequence

generated. Furthermore, suppose the transaction that executed the first deposit transition is even-

tually aborted, and the transaction that executed the second deposit transition is serialized be-

fore the transaction that executed the udthdral# transition. The serialized sequence would be

_deposit_50_okay, udthdraw_40_insuf). As it is invalid, the implementation does not meet the

specification. Since aborted transitions are left out in all atomic objects, a correct implementa-

tion appears to be failure atomic. Since all atomic objects follow the same serialization order,

transactions appear to execute serially in that order.

3 Overview of Synchronization

In many systems that support atomic transactions, synchronization is transparent[W*82,Lis85]. An

account object like the one described above would typically be implemented with a real number. A

deposit or withdrato operation would be implemented with a read and a write operation on the real

number. Synchronization would be performed transparently during the read and write operations.
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For example, a read lock and a write lock associated with the real number can be acquired.

Synchronization is explicit in our approach. The state of an atomic object is represented as

a history of previously executed transitions. The execution of an operation on the atomic object

is implemented as an addition to this collection of transitions. Explicit synchronization is needed

before the addition to determine whether the cuirent operation can proceed immediately or has to

be retried. The following is a simplified outline of the code for a typical operation of an atomic

object.

vat state = <history of transitions>

operationl = procedure(<argusent declarations>) return(<result declarations>)

if <synchronization code to determine whether operation can proceed>

then <insert transition _or operationl into history of transitions>

else <retry later>

end procedure

In thissectionwe willdescribe how the application-dependent synchronization code can be written.

The goal of the synchronization isto guarantee that the serializedsequence generated isvalid,based

on the information kept in the historyof previously invoked transitions.

Given this goal,the synchronization problem becomes trivialifeach atomic object has complete

knowledge ofthe serializationorder and transaction outcomes. In other words, the atomic object has

complete knowledge ofthe serializedsequence. When a new operation isinvoked, an implementation

for an atomic object would simply return a result such that the resultant serializedsequence is

valid.For example, ifan account object implementation has complete knowledge of the serialized

sequence, a read_balance operation would never be delayed as the balance can be determined by

crediting/debiting the deposits/withdrawals in the order of the'serializedsequence.

Unfortunately, thisisnot the case as incomplete transactions can eithercommit or abort, and

some serializationprotocols, such as the one used in two-phase locking, do not determine the

serializationordering between two transactions until they commit. In other words, there may be

differentpossible values for the serializedsequence. The atomic object may not know which one

isthe right value. It isthis lack of knowledge that causes loss of concurrency. For example, a

rea_i_Safanceoperation cannot proceed ifitisuncertain whether a previous update transitionwill

be ordered before itselfin the serializedsequence. Fortunately, in many situations,the semantics

of an application would allow an implementation to return a result even though there may be
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many possible serialized sequences. For such a result to be returned, each of the possible resultant

serial/zed sequences must be valid.

To illustrate with an example, consider an account object that had processed a committed

deposit operation that deposited $100 and a withdraw operation that withdrew $40. The transac-

tion that invoked the withdraw operation is incomplete. Suppose another withdraw operation that

tries to withdraw $50 is invoked. Furthermore, suppose the account object knows that the deposit

operation is serialized before the two withdraw operations but the serialization ordering between

the two withdraw operations is unknown. Normally, if we use two-phase locking with read/write

locks, the second withdraw operation will be delayed because both withdraw operations have to

acquire a write lock. However, since in all the possible serialized sequences, there is always enough

money to cover the second withdrawal, an oicalt response can be returned immediately. (In other

words, all the possible serialized sequences that include a deposit_50_okay transition will be valid.)

Similarly, if the second withdraw operation tries to withdraw more than $100, an insu/ response

can be returned immediately. Notice that if the second withdraw operation tries to withdraw, say,

$70, it will be delayed. This is because whether the withdrawal will succeed depends on whether the

first withdraw operation will commit. In other words, regardless of whether a withdraw_TO_o/cay

transition or a withdraw_70.inau/ transition is added, some of the possible resultant serialized

sequences are invalid. Consequently, neither the otcay response nor the inauf response can be

returned immediately.

From our example above, we see that the required synchronization involves finding a result to a

newly invoked operation such that adl possible resultant serialized sequences are valid. In order to

analyze this process, we will classify the possible transitions of an atomic object into observer tran-

sitions and mutator transitions. An observer transition allows information to be derived about the

state of the object (i.e., at least two different results can be returned to this transition's operation

depending on the state of the object). For example, the read_balance and withdraw transitions are

observer transitions (the latter allows the caller to determine whether the balance is more than the

amount to be withdrawn). A mutator transition t changes the state of the object (i.e., N(s, t) = s'

s.t. s -_ s'). For example, the transitions depoait_x_okay and withdraw_x_okay are mutator tran-

sitions. A transition can be both a mutator and an observer. An observer transition t_ has a valid

observation with respect to a sequence tz.t2...t_...t,_ of transitions if N'(...N(N([, tz), t2), ..., t_) _ _k,

where/" is the initial state and N is the state transition function. In order for a sequence Q to be

valid, each of the observer transitions in Q must have a valid observation with respect to Q.



Twosynchronization re_quirements have to be met before a result can be returned to an operation

(i.e., a new transition can be added). The two requirements apply when the new transition is an

observer and a mutator respectively. In the first requirement, the new observer transition must have

a valid observation with respect to any possible serialized sequence. In the second requirement,

for each possible serialized sequence Q, each observer transition serialized after the new mutator

transition must have a valid observation with respect to Q. For example, in order to return okay

to a withdraw operation (withdraw__okay is both an observer and a mutator), we must make

sure that there is enough money to cover this withdrawal (the observation of this transition is

valid) and there is still enough money to cover other withdrawals serialized after this one (the

observation of other transitions serialized after this one remains valid). Synchronization can be

viewed as enumerating all the possible serialized sequences and testing the two requirements.

Initially, it may seem inefficient to have to enumerate all the possible serialized sequences.

Fortunately, optimizations are possible. Instead of enumerating all the possible sequences, testing

for patterns o/transitions can identify invalid observations. For example, the observation of a

withdrauJ_z_oka!l transition may be invalid if there are uncommitted deposit/withdraw transitions

that may be serialized before it. The presence of the uncommitted transactions indicates the

possibility of at least two different serialized sequences, each having a different balance. Notice

that we can ignore non-mutator transitions such as read_balance and withdraw___insu/transitions.

Their position relative to the withdrau__z_oka!l transition in a sequence does not affect the validity

of the latter's observation.

A more detailed analysis of transition patterns can sometimes provide more concurrency, and

still avoid enumerating all the possible serialized sequences. In the previous example, we can

consider a possible _worst-case _ sequence. It happens when all the deposit.y_oka9 transitions that

may be aborted or serialized after the new withdraw transition eventually do, and all the other

withdratv_z_oka!t transitions that may be committed and serialized before this one also eventually

do. If the observation of this withdraw transition is valid with respect to this worst-case sequence,

then the observation will be valid for all other possible serialized sequences. This is because the

observed balance in all other sequences will be more than or equal to that in the worst-case sequence.

Summarizing, writing application-dependent synchronization code follows a structured pattern.

First, transitions should be classified as observers and mutators. Second, before adding an observer

transition, we should" determine which mutator transitions may affect the validity of its observa-

tion. Code should be written to determine whether they exist and may be serialized before the
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new transition. Third, before adding a mutator transition, we should determine which observer

transitions may have their observation invalidated by the new transition. Code should be written

to determine whether they exist and may be serialized after the new transition.

4 History Trees

To support the kind of synchronization described above, we will describe a history abstraction. It

can be used by an atomic object implementation to capture the history of previously processed

transitions, their serialization ordering, and the outcomes of the corresponding transactions, which

in turn determines the set of possible serialized sequences. An instance in the history abstraction

can be visualizedan a tree.In thistree,each node isa transition record that captures the information

in a transition.An edge existsbetween two transitionrecords iftheirserializationorder isknown

and isin the directionof the edge.

In a simple implementation, an atomic object isexpected to be associated with a singlehistory

tree. A transitionrecord will be inserted into the history tree each time an operation isprocessed

by the atomic object. Transition records axe also periodicallydeleted from the history tree after

they are committed and theirserializationorder determined.

A transitionrecord contains the name ofthe operation, the values ofthe axgument(s) and result,

and the statusof the transaction that invokes the operation (which iseithercommitted, aborted, or

unknown). To simplifyour examples insections 5 and 6,we willnot show how these fieldsare filled

in. The reader can assume that when an operation isinvoked, a transitionrecord iscreated and

most of the fieldsaxe initialized.More updating takes place when the operation returns and when

an atomic object isinformed of the outcome of a transaction. Primitives axe provided to read the

fieldsin a transitionrecord. For exarnple,t.argl returns the firstargument of the transitiont. We

also assume that a distinguished variable this.transition isassociated with the current transition

record when an operation isprocessed.

In addition to history trees and transition records, we also make use of template records.

Their purpose is for pattern matching with transition records. For example, a template like

committed_withdraw_x_oka!l matches any successful withdraw transitions that have committed.

The following is a list of the operations provided by a history tree h. We assume a syntax of

"h.operation(arguments)" in invoking these operations, where h is the identifier of a history tree.

new - procedure()



initialize h _o u empty ]_lstory tree.

delete_first = procedure() returns(transition)

deletes and returns a committed transition that is serialized before all other

transitions in h. If such a transition does not exist yet, the invoking process

will be suspended until it does. Neanwhile, any monitor locks acquired by the

• _ suspended process are released. Those monitor locks will be acquired again

before resuming the suspended process.

match = procedure(t: template) returns(array[transition])

returns a sequence of the transitions in h that matches t.

exists = procedure(t: template, p: procty_e(transition) returns(bool))

returns(bool)

returns true if there is a transition s in h such that s matches the template t

and p(s) returns true. Otherwise false is returned, p is an optional argument.

If p is omitted, only the template t is used to filter transitions in h.

insert = procedure(t: transition)

inserts t into h.

restrict = procedure(t: transition, after, definite: bool) returns(history)

returns a sub-history of h, which is also a history tree, but it contains only a

subset of the transitions in h. The transitions included in the subset depends

on the two boolean arguments. There are four combinations. If both after and

definite are true, then all the transitions that are DEFINITELY serialized AFTER

t are included. A transition t' is definitely serialized after t if there is a

path of edges leading from t to t' in h and t' is committed. If both after and

definite are false, then all the transitions that are POTENTIAEEY serialized

BEFORE t are included. A transition t' is potentially serialized before t if

there is not a path of edges leading from t to t' in h. The other two

combinations are defined similarly.
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Theoperationrestrict deserves a special note. It returns a h/story tree that contains a subset

of the transition records in h. In addition to the boolean arguments, the exact membership of the

history tree returned depends on the current knowledge of the serialization order and transaction

outcomes encoded in h. For example, with a timestamp ordering serialization protocol in which

timestamps are assigned at the beginning of a transaction, restrict can be implemented easily

based on timestamp comparisons and the status of the transition records. On the other hand, if

the serialization order is determined by the order of commitment as in two-phase locking, the exact

serialization order can be determined only among committed transitions. The only information we

know concerning an uncommitted transition t is that it is serialized after any committed transition

that has been committed before t is invoked (which guarantees that t will have a later commitment

timestamp). In other words, if the argument t is uncommitted, restrict(t, true, true) would return

an empty history, since we do not know which other transitions will definitely be committed and

serialized after t. Restrict(t, true, false), however, will return a history containing transitions that

may have later commitment timestamps, which include all uncommitted transitions, and committed

transitions that are committed after t is invoked.

The discussion above illustrates how the history abstraction hides the internal details of a serial-

ization protocol. Our model of each atomic object possessing partial knowledge of the serialization

order and transaction outcomes is su_ciently general to encompass a large class of serialization

protocols.[A*83,B*82,BG81,BG83,Dav84,Gra78] Consequently, these serialization protocols can be

used within the history abstraction.

5 A Sirnple Example

In thissectionwe willpresent a simple example that followsthe synchronization paradigm described

in section 3. Itimplements the account object.Itisnot as concurrent as allowed by the semantics.

A more complicated version that provides the extra concurrency will be described in section 6.

account = monitor exports read_balance, deposit, withdraw

constants declared as abbreviations for transition templates

read • read_balance_x;

deposit = deposit_x_okay;

withdraw = withdraw_x_okay;
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succsasf__upda_e = deposit or withdraw; _ aa_ches any depoalt or withdraw

insu_ = withdraw_x_insuf; _ transitions with an okay result

AFTER = true; BEFORE = false;

DEFINITE = true; POTENTIAL = false;

var snapshot: real := O;

h: history; h.new(); % h initialized to empty history tree

while true do clean_up() end _ background process

clean_up = entry procedure() _ the monitor lock is acquired

t: transition := h.delete_first()

if t.aatch(deposit) then snapshot := snapshot + t.argl

elseif t.aatch(withdraw) then snapshot := snapshot - t.argl

end

end clean_up _ the aonitor lock is released

abort = entry procedure(t: transition)

h.delete(t)

end abort

deposit = entry procedure(x: real)

if _ make sure no transitions potentially serialized after this transition

may have their observation invalidated.

"h.restrict(this_transition, AFTER, POTENTIAL).exists(read) and

-h.restrict(this_transition, AFTER, POTENTIAL).exists(insul)

then h.insert(this_transition); return; end

retry

end deposit
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end ac count

In our example, the account object is programmed as a module with shared data (snapshot,

h) accessed by Concurrent processes. To synchronize access to these shared data structures,the

module isprogrammed as a monitor. Exclusive access is provided to a process for the duration

of an entry procedure. We assume that the applicationwould structure procedures in such a way

that the monitor lock would not be held for an excessive long period of time.

Ignoring the clean_up and abort procedures for now, we see that the only task performed by

the deposit procedure is to determine whether any transitionsthat may be serializedafter this

(mutator) transitionmay have theirobservation invalidatedby the deposit. There are two kinds of

such transitions. The first kind is read_balance transitions. The second kind is withdraw_z_insuf

transitions. If either kind of transitions exists, the operation has to be retried at some later time.

We will explain how the retry primitive can be implemented later. If neither kinds of transitions

exist, the current deposit transition can be inserted to the history tree. Since deposit transitions

are not observers, we do not have to worry about the validity of any observation of the new deposit

transition.

In the background, there is a looping process that reduces the size of the history tree by deleting

transition records from it. The transition records will be deleted in the global serialization order

and only after they are committed. The effects of the deleted transitions are reflected in snapshot.

Notice that because transitions are deleted in the global serialization order, the value of snapshot

reflects the balance resultant from the deleted transitions executed in the global serialization order.

In the example above, the variable snapshot is not accessed by the deposit operation at all. Later

we will see that it is needed in other operations such as withdraw and read_balance.

Occasionally, the background process will be blocked because either it cannot yet determine

which transition is serialized before all other transitions or that transition has not committed yet.

In that case, we have to wait for the serialization order to be determined or some transition to

commit. The background process will be suspended but the monitor lock will be released so that

other processes can access the shared data.

When a transaction is aborted, the abort procedure will be invoked with the transition(s) of

that transaction. Recovery is achieved by simply deleting the transition from the history tree.
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6 A More Concurrent Deposit Operation

The implementation for the deposit operation above is not as concurrent as it could have been. On

some occasional a deposit operation should be able proceed even though there axe withdraw.z_insuf

transitions serialized after itself. This can happen if the amount deposited is so small that it would

not have made a difference to the withdraw transition. The following more complicated yersion of

deposit provides this extra concurrency.

account - monitor is read_balance, deposit, withdraw

. . . .

deposit - entry procedure(x: real)

if _ make sure no transitions potentially serialized after this transition

may have their observation invalidated.

"h.restrict(this_transition, AFTER, POTENTIAL).exists(read) and

-h.restrict(this_transition, AFTER, POTENTIAL).exists(insuf,

bind(shortby_less_than, x))

then h.insert(this_transition); return

end

retry

end deposit

bind - procedure(p: proctype(real, transition) returns(bool), x:

returns(proctype(tranaition) returns(bool))

q = procedure(t: transition) returns(bool)

return(p(x, t))

end q

return(q)

end bind

real)

short_by_less_than - procedure(x: real, t: transition) return_(bool)

return(t.argl - highest_possible_balance_observed_by(t) <= x)

end short_by_less_than
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highest_possible.balance_observed_by = procedure(t: transition) returns Creal)

return(snapshot- accuaulate(DEFINITE, withdraw, t)

+ accuaulate(POTENTIAE, deposit, t))

end highest_possible_balance_observed_by

accumulate • procedure(certainty: bool, opname: template, t: transition)

returns(real)

value: real := 0

for each s: transition in h.restrict(t, BEFORE, certainty).match(opname) do

value := value + s.argl

end

return(value)

end accumulate

end account

The only differencebetween the deposit procedure in thisexample with the previous one isthat

we have added a filter bind(short_by_less_than, z). The filter is a procedure (more accurately, a

closure) that filtersout any withdraw_y_insu[ transitionsthat are short by more than z dollars

under any possiblesituation.Their existenceshould not prevent the current deposit operation from

proceeding because the new deposit would not make a differenceto them anyway. In other words,

theirobservation that the balance islessthan what they were trying to withdraw isnot invalidated

by the current depo_'t operation.

The filterisimplemented with the bind procedure, which ismerely a linguisticmechanism to

create a closure. Itbinds z to the firstargument of the procedure short_by_less_than. Inside the

short_by_less_than procedure, ittestswhether a toithdraw_y_insuf transition(t) may be short by

less than or equal to z. To determine the answer, it finds out the highest possible balance the

account may have immediately before executing the withdrawal (t) in allthe possible serialized

sequences. This is the worst-case sequence we mentioned in section 3. If that highest possible

balance, added with the current deposit, ismore than or equal to the amount to be withdrawn

(t.argl),then the withdrawal may be short by lessthan or equal to z.
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To determine the highat possible balance, we take the value of the snapshot, which zeflectsa

subset of the update transitionsserializedbefore the withdrawal (those already deleted from the

history tree). Then all the deposit transitionsin the history tree that may commit and may be

serializedbefore the withdrawal have to be added in. Finally,allthe withdraw_z_okay transitionsin

the historytreethat are definitelycommitted and serializedbefore the withdraw_y_insu/transition

can be deducted to give a tighterbound.

The following isa possible implementation of the withdraw operation which isvery similarto

the deposit operation above.

withdraw = entry procedure(x: real) signals(insul)

if highest_possible_balance_observed_by(this_transition) < x

then h.insert (this_transition) ; signal insuf

end

if "h.restrict(this_transition. POTENTIAL, AFTER).exists(read) and

-h.restridt(this_transition. POTENTIAL. AFTER).exists(withdraw.

bind(exceed,by_less_than, x)) and

lowest_possible_balance_observed_by(this_tranaition) >- x

then h.insert(this_transition); return

end

retry

end withdraw

lowest_possible_balance_observed_by = procedure(t: transition) returns(real)

return(snapshot - accumulate(POTENTIAL, withdraw, t)

+ accumulate(DEFINITE, deposit, t))

end lowest_possible_balance_observed_by

exceed_by_less_than - procedure(x: real. t: transition) returns(bool)

return(lowest_possible_balance_observed_by(t) - t.argl < x)

end exceed_by_less_than
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7 Retrying an Operation

An operation may not be able to proceed because there is the possibility that its result is invalid or

it may invalidate the observation of previous transitions. In those situations, it should be retried.

This is the purpose of the retry statements in the program. Ideally, we would have a boolean

expression as an argument to the retry statement indicating the precise condition under which the

operation would be able to proceed. The underlying system implementation would then determine

when the boolean expression may be satisfied and retry the operation at that time. Unfortunately,

this is not feasible for several reasons.

First, with an arbitrary boolean expression, the system implementation has to evaluate it every

time the state of the object might have been modified to make the boolean expression valid. In our

example, it would involve testing the boolean expression each time the monitor is exited. The cost

of evaluating these boolean expressions can be substantial if there are many "false alarms." Second,

for some serialization protocols, delaying is not always an appropriate solution. For example, in

a timestamp ordering protocol, the serialization order of a set of transactions is fixed by a unique

timestamp that each transaction acquires when it begins. Suppose a transaction that performs

mutation (e.g., deposit) is invoked later than _another transaction that performs observation (e.g.,

read_balance). Furthermore, suppose the first transaction has a smaller timestamp. Because the

observing transaction has already returned without observing the effects of the mutating transac-

tion, the mutating transaction cannot be serialized before the observing transaction. Aborting one

of the transactions and then restarting it with a later tirnestamp is the only alternative. On the

other hand, delaying is the preferable action ff the'observing transaction (with a larger timestarnp)

is invoked after an uncommitted mutating transaction. Given an arbitrary boolean expression, it

can be a very difiicult, if not impossible, task to require the underlying system implementation to

choose the appropriate action.

Some of the solutions that have been suggested in concurrent programming literature[AS83] use

condition variables. Each operation will explicitly wait and signal appropriate condition variables.

However, condition variables can only be used to delay, but not restart, operations. Consequently,

the use of conditional variables would require additional mechanisms that might betray the under-

lying serialization protocol.

As a compromise, we require the programmer to specify a boolean expression along with each

retry statement (not shown in the examples), with the constraint that the boolean expression is
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shouldindicatethe conditionunderwhichthe operationcanproceed.Dueto the constrainton

the structureof the booleanexpression,it maybe a sufficient but not necessary condition. The

constraint allows the system implementation to determine a set of history treeor transition record

operations that may cause the boolean expression to become valid. Given such a set of events, the

system implementation can determine the actions that should be taken when an operation cannot

proceed immediately, based on the system's perception of the likelihood of the events. For example,

suppose the condition for a deposit operation to proceed is:

"h . restrict (this_transition, AFTER, POTENTIAL) .exists(read) and

"h. restrict (this_transition. AFTER. POTENTIAl.). exist s (insuf)

and the serialization protocol is a timestamp ordering algorithm. Given that the deposit operation is

unable to proceed because some other read_balance or ws'thdraw_x_insu/transitions are serialized

after it, the only event that can cause this condition to become satisfied is to for those transitions to

be aborted and deleted from the history tree. Assuming that most transactions eventually commit,

delaying is probably less appropriate than restarting the deposit transaction with a new (later)

timestamp. A more detailed description of the algorithm to implement the retry statement can

be found in {Ng86]. Summarizing, a constrained boolean expression provided by the programmer

seems to both offer efficiency in rescheduling and avoid additional mechanisms that may betray the

underlying serialization protocol.

8 Automated Synchronization and Recovery

Automating the application-dependent synchronization and recovery described above is not diffi-

cult. A simple approach is to express when an invocation can proceed through the use of logic

programming rules. As we will see in an example below, the application-dependent part of syn-

chronization can be captured in a few rules. More importantly, these application-dependent rules

can be generated from the specification of an atomic object easily. As a result, automation of

synchronization would only require inputing the specification in a suitable format.

Suppose list_of_sequence is a list of all the possible serialized sequences° In our notation below,

we will assume that a list/sequence el, e2, e3, ... can be represented as el.Tail where Tail = e2, e3, ....

Whether the invoked operation can proceed immediately can be determined by the following rules

written in Prolog:
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(I) :- proceedable(J4_Ltial_sCaCe, lls¢_o__sequence)

(2) proceedable(S, nil)

(3) proceedable(S, Seq.List_of_Seq) :- valid(S, Seq), proceedable(S, List_of_Seq)

(4) valid(S, nil)

(5) valid(S. T.Seq) :-merge(S, T, New_S). valid(New_S. Seq)

Rule (1) represents the goal that we 'are trying to prove: whether the invoked operation can

proceed given the initialstateofthe statemachine and the listofpossible serializedsequences. The

proving of tl_egoal can be made more efficientby truncating the common prefixfrom each of the

sequences in Hst_o/_seq,_ence,and replacing initial_statewith the state that the state machine is

at after processing the transitionsin the common prefix. Rules (2) and (3) state that an invoked

operation can proceed immediately as long as each possible serializedsequence in the listisvalid.

Rules (4) and (5) state that a sequence is,Ja/;,ias long as each transitionin the sequence can merge

successfullywith the snapshot to produce a new snapshot. The rulesfor merge willbe application-

dependent and determined by the specificationof the atomic object. For an atomic bank account

object,the rules for merge are the following:

(6) aergeCS.

(7) aergeCS.

(8) merge(S.

(9) aerge(S,

(deposit.X.okay), New_S) :- Mew_S is S+X

(withdraw.X.okay), New_S) :- New_S is S-X. S >- X

(withdraw.X.inau_), New_S) :- Mew_S is 5, S < X

(read.balance.X), New_S) :- Mew_S is S, S - X

The rulesabove are very similarto the specificationwe used insection2. Given the specification

in a suitable format, itisnot difficultto convert itautomatically to rules that can be interpreted

by a Prolog interpreter.

9 Conclusion

In thispaper we have described an approach of implementing atornicitythat has three character-

istics.First,it utilizesthe semantics of an application to improve concurrency. Second, ithelps

reduce the complexity of application-dependent synchronization code by analyzing the process of

writing it. In fact,the process can be automated with logicprogramming. Third, our approach

hides the actual serializationprotocol used to arrive at a global serializationorder."As a result,

differentserializationprotocols can be used without aITectingthe applications.
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Using our approach, each application will be able to control its own concurrency by designing its

semantics appropriately. With better facilities to harness the concurrency inherent in the semantics

of an application, it becomes more feasible to construct large systems with many cooperating

applications.
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